On isomorphisms and embeddings of C(K) spaces

Grzegorz Plebanek

Instytut Matematyczny, Uniwersytet Wrocławski

Hejnice, January/February 2013

2013 1 / 12

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Preliminaries

G. Plebanek (IM UWr)

イロト イ部ト イヨト イヨト 二日

 ${\it K}$ and ${\it L}$ always stand for compact Hausdorff spaces.

12

イロン イ理 とく ヨン イ ヨン

K and L always stand for compact Hausdorff spaces. For a given K, C(K) is the Banach space of all continuous real-valued functions $f : K \to \mathbb{R}$,

K and *L* always stand for compact Hausdorff spaces. For a given *K*, C(K) is the Banach space of all continuous real-valued functions $f : K \to \mathbb{R}$, with the usual norm: $||g|| = \sup_{x \in K} |f(x)|$.

 $m \cdot ||g|| \leq ||Tg|| \leq M \cdot ||g||.$

$$m \cdot ||g|| \leq ||Tg|| \leq M \cdot ||g||.$$

If M is the least constant with such a property then M = ||T||,

イロト 不得 トイラト イラト 一日

$$m \cdot ||g|| \leq ||Tg|| \leq M \cdot ||g||.$$

If *M* is the least constant with such a property then M = ||T||, likewise $m = 1/||T^{-1}||$.

$$m \cdot ||g|| \leq ||Tg|| \leq M \cdot ||g||.$$

If *M* is the least constant with such a property then M = ||T||, likewise $m = 1/||T^{-1}||$.

$$m \cdot ||g|| \leq ||Tg|| \leq M \cdot ||g||.$$

If *M* is the least constant with such a property then M = ||T||, likewise $m = 1/||T^{-1}||$. Isomorphic embedding $T : C(K) \to C(L)$ which is onto is called an **isomorphism**;

$$m \cdot ||g|| \leq ||Tg|| \leq M \cdot ||g||.$$

If *M* is the least constant with such a property then M = ||T||, likewise $m = 1/||T^{-1}||$. Isomorphic embedding $T : C(K) \to C(L)$ which is onto is called an **isomorphism**; we then write $C(K) \sim C(L)$.

C(K) spaces for nonmetrizable K

G. Plebanek (IM UWr)

2013 3 / 12

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 二百

C(K) spaces for nonmetrizable K

Theorem

Under CH, for every K of weight $\leq c$, C(K) embeds isometrically into $C(\omega^*)$ (which itself is isometric to I_{∞}/c_0)).

C(K) spaces for nonmetrizable K

Theorem

Under CH, for every K of weight $\leq c$, C(K) embeds isometrically into $C(\omega^*)$ (which itself is isometric to I_{∞}/c_0)).

Dow & Hart: Consistently, the measure algebra does not embed into $P(\omega)/fin$, so its Stone space S is not an image of ω^* .

イロト イ理ト イヨト イヨト

Theorem

Under CH, for every K of weight $\leq c$, C(K) embeds isometrically into $C(\omega^*)$ (which itself is isometric to I_{∞}/c_0)).

Dow & Hart: Consistently, the measure algebra does not embed into $P(\omega)/fin$, so its Stone space S is not an image of ω^* . On the other hand, $C(S) \equiv L_{\infty}[0,1] \sim I_{\infty} \equiv C(\beta\omega)$ embeds into $C(\omega^*)$.

《曰》 《問》 《글》 《글》 _ 글

Theorem

Under CH, for every K of weight $\leq c$, C(K) embeds isometrically into $C(\omega^*)$ (which itself is isometric to I_{∞}/c_0)).

Dow & Hart: Consistently, the measure algebra does not embed into $P(\omega)/fin$, so its Stone space S is not an image of ω^* . On the other hand, $C(S) \equiv L_{\infty}[0,1] \sim I_{\infty} \equiv C(\beta\omega)$ embeds into $C(\omega^*)$.

Todorčević (2011) proved that, consistently, there is a "small" compact K such that C(K) does not embed into $C(\omega^*)$, cf. **Krupski-Marciszewski** (2012).

G. Plebanek (IM UWr)

Isomorphisms of C(K) spaces

2013 4 / 12

イロト イポト イミト イミト 一日

• **Banach-Stone:** If C(K) is isometric to C(L) then $K \simeq L$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Banach-Stone: If C(K) is isometric to C(L) then $K \simeq L$.
- Amir, Cambern: If $T : C(K) \to C(L)$ is an isomorphism with $||T|| \cdot ||T^{-1}|| < 2$ then $K \simeq L$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- **Banach-Stone:** If C(K) is isometric to C(L) then $K \simeq L$.
- Amir, Cambern: If $T : C(K) \to C(L)$ is an isomorphism with $||T|| \cdot ||T^{-1}|| < 2$ then $K \simeq L$.
- Jarosz (1984): If $T : C(K) \to C(L)$ is an embedding with $||T|| \cdot ||T^{-1}|| < 2$ then K is a continuous image of some compact subspace of L.

- **Banach-Stone:** If C(K) is isometric to C(L) then $K \simeq L$.
- Amir, Cambern: If $T : C(K) \to C(L)$ is an isomorphism with $||T|| \cdot ||T^{-1}|| < 2$ then $K \simeq L$.
- Jarosz (1984): If $T : C(K) \to C(L)$ is an embedding with $||T|| \cdot ||T^{-1}|| < 2$ then K is a continuous image of some compact subspace of L.
- Miljutin: If K is an uncountable metric space then $C(K) \sim C([0, 1])$.

- **Banach-Stone:** If C(K) is isometric to C(L) then $K \simeq L$.
- Amir, Cambern: If $T : C(K) \to C(L)$ is an isomorphism with $||T|| \cdot ||T^{-1}|| < 2$ then $K \simeq L$.
- Jarosz (1984): If $T : C(K) \to C(L)$ is an embedding with $||T|| \cdot ||T^{-1}|| < 2$ then K is a continuous image of some compact subspace of L.
- Miljutin: If K is an uncountable metric space then $C(K) \sim C([0, 1])$.

- **Banach-Stone:** If C(K) is isometric to C(L) then $K \simeq L$.
- Amir, Cambern: If $T : C(K) \to C(L)$ is an isomorphism with $||T|| \cdot ||T^{-1}|| < 2$ then $K \simeq L$.
- Jarosz (1984): If $T : C(K) \to C(L)$ is an embedding with $||T|| \cdot ||T^{-1}|| < 2$ then K is a continuous image of some compact subspace of L.
- Miljutin: If K is an uncountable metric space then $C(K) \sim C([0,1])$.

In particular $C(2^{\omega}) \sim C[0,1];$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のQの

- **Banach-Stone:** If C(K) is isometric to C(L) then $K \simeq L$.
- Amir, Cambern: If $T : C(K) \to C(L)$ is an isomorphism with $||T|| \cdot ||T^{-1}|| < 2$ then $K \simeq L$.
- Jarosz (1984): If T : C(K) → C(L) is an embedding with ||T|| · ||T⁻¹|| < 2 then K is a continuous image of some compact subspace of L.
- Miljutin: If K is an uncountable metric space then $C(K) \sim C([0,1])$.

In particular $C(2^{\omega}) \sim C[0, 1];$ $C([0, 1] \cup \{2\}) \sim C[0, 1].$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ ▲国 ● ○○○

Some ancient problems

G. Plebanek (IM UWr)

2013 5 / 12

イロト イポト イミト イミト 一日

For which spaces K, $C(K) \sim C(K+1)$?

3

・ロト ・四ト ・ヨト ・ヨト

For which spaces K, $C(K) \sim C(K+1)$?

Here K + 1 denotes K with one additional isolated point.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

For which spaces K, $C(K) \sim C(K+1)$?

Here K + 1 denotes K with one additional isolated point. This is so if K contains a nontrivial converging sequence: $C(K) = c_0 \oplus X \sim c_0 \oplus X \oplus \mathbb{R} \sim C(K + 1).$

イロト イ理ト イヨト イヨト

For which spaces K, $C(K) \sim C(K+1)$?

Here K + 1 denotes K with one additional isolated point. This is so if K contains a nontrivial converging sequence: $C(K) = c_0 \oplus X \sim c_0 \oplus X \oplus \mathbb{R} \sim C(K + 1).$ Note that $C(\beta\omega) \sim C(\beta\omega + 1)$ (because $C(\beta\omega) = I_{\infty}$) though $\beta\omega$ has no converging sequences.

For which spaces K, $C(K) \sim C(K+1)$?

Here K + 1 denotes K with one additional isolated point. This is so if K contains a nontrivial converging sequence: $C(K) = c_0 \oplus X \sim c_0 \oplus X \oplus \mathbb{R} \sim C(K + 1).$ Note that $C(\beta\omega) \sim C(\beta\omega + 1)$ (because $C(\beta\omega) = I_{\infty}$) though $\beta\omega$ has no converging sequences.

Problem

For which spaces K there is a totally disconnected L such that $C(K) \sim C(L)$?

G. Plebanek (IM UWr)

2013 6 / 12

イロト イポト イミト イミト 一日

Koszmider (2004): There is a compact connected space K such that every bounded operator T : C(K) → C(K) is of the form T = g · I + S, where S : C(K) → C(K) is weakly compact.

Koszmider (2004): There is a compact connected space K such that every bounded operator T : C(K) → C(K) is of the form T = g · I + S, where S : C(K) → C(K) is weakly compact. cf. GP(2004).

Koszmider (2004): There is a compact connected space K such that every bounded operator T : C(K) → C(K) is of the form T = g · I + S, where S : C(K) → C(K) is weakly compact. cf. GP(2004). Consequently, C(K) ≁ C(K + 1),

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Koszmider (2004): There is a compact connected space K such that every bounded operator T : C(K) → C(K) is of the form T = g · I + S, where S : C(K) → C(K) is weakly compact. cf. GP(2004).

Consequently, $C(K) \not\sim C(K+1)$, and C(K) is not isomorphic to C(L) with L totally disconnected; .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Koszmider (2004): There is a compact connected space K such that every bounded operator T : C(K) → C(K) is of the form T = g · I + S, where S : C(K) → C(K) is weakly compact. cf. GP(2004). Consequently, C(K) ≁ C(K + 1), and C(K) is not isomorphic to C(L) with L totally disconnected; .
- Aviles-Koszmider (2011): There is a space K which is not Radon-Nikodym compact but is a continuous image of an RN compactum;

Two peculiar compacta

- Koszmider (2004): There is a compact connected space K such that every bounded operator T : C(K) → C(K) is of the form T = g · I + S, where S : C(K) → C(K) is weakly compact. cf. GP(2004).
 Consequently, C(K) ≁ C(K + 1), and C(K) is not isomorphic to C(L) with L totally disconnected; .
- Aviles-Koszmider (2011): There is a space K which is not Radon-Nikodym compact but is a continuous image of an RN compactum; it follows that C(K) is not isomorphic to C(L) with L totally disconnected.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Two peculiar compacta

- Koszmider (2004): There is a compact connected space K such that every bounded operator T : C(K) → C(K) is of the form T = g · I + S, where S : C(K) → C(K) is weakly compact. cf. GP(2004).
 Consequently, C(K) ≁ C(K + 1), and C(K) is not isomorphic to C(L) with L totally disconnected; .
- Aviles-Koszmider (2011): There is a space K which is not Radon-Nikodym compact but is a continuous image of an RN compactum; it follows that C(K) is not isomorphic to C(L) with L totally disconnected.

Problem (Argyros & Arvanitakis)

Let K be a compact convex subset of some Banach space which is not metrizable. Can C(K) be isomorphic to C(L), where L is totally disconnected?

Some questions

G. Plebanek (IM UWr)

Isomorphisms of C(K) spaces

2013 7 / 12

イロト イ部ト イヨト イヨト 二日

• Suppose that C(K) and C(L) are isomorphic. How K is topologically related to L?

イロト イポト イヨト イヨト 二日

- Suppose that C(K) and C(L) are isomorphic. How K is topologically related to L?
- Suppose that C(K) can be embedded into C(L), where L has some property \mathcal{P} . Does K has property \mathcal{P} ?

イロト 不得下 イヨト イヨト 二日

Results on positive embeddings

G 1.	Plebanek	E LIIV	1 UVVr

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Results on positive embeddings

An embedding $T : C(K) \to C(L)$ is **positive** if $C(K) \ni g \ge 0$ implies $Tg \ge 0$.

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ― 圖 … のへで

Results on positive embeddings

An embedding $T : C(K) \to C(L)$ is **positive** if $C(K) \ni g \ge 0$ implies $Tg \ge 0$.

Theorem

Let $T : C(K) \to C(L)$ be a positive isomorphic embedding. Then there is $p \in \mathbb{N}$ and a finite valued mapping $\varphi : L \to [K]^{\leq p}$ which is onto $(\bigcup_{y \in L} \varphi(y) = K)$ and upper semicontinuous (i.e. $\{y : \varphi(y) \subseteq U\} \subseteq L$ is open for every open $U \subseteq K$).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

An embedding $T : C(K) \to C(L)$ is **positive** if $C(K) \ni g \ge 0$ implies $Tg \ge 0$.

Theorem

Let $T : C(K) \to C(L)$ be a positive isomorphic embedding. Then there is $p \in \mathbb{N}$ and a finite valued mapping $\varphi : L \to [K]^{\leq p}$ which is onto $(\bigcup_{y \in L} \varphi(y) = K)$ and upper semicontinuous (i.e. $\{y : \varphi(y) \subseteq U\} \subseteq L$ is open for every open $U \subseteq K$).

Corollary

If C(K) can be embedded into C(L) by a positive operator then $\tau(K) \leq \tau(L)$ and if L is Frechet (or sequentially compact) then K is Frechet (sequentially compact).

イロト 不得 トイラト イラト 一日

An embedding $T : C(K) \to C(L)$ is **positive** if $C(K) \ni g \ge 0$ implies $Tg \ge 0$.

Theorem

Let $T : C(K) \to C(L)$ be a positive isomorphic embedding. Then there is $p \in \mathbb{N}$ and a finite valued mapping $\varphi : L \to [K]^{\leq p}$ which is onto $(\bigcup_{y \in L} \varphi(y) = K)$ and upper semicontinuous (i.e. $\{y : \varphi(y) \subseteq U\} \subseteq L$ is open for every open $U \subseteq K$).

Corollary

If C(K) can be embedded into C(L) by a positive operator then $\tau(K) \leq \tau(L)$ and if L is Frechet (or sequentially compact) then K is Frechet (sequentially compact).

Remark: p is the integer part of $||T|| \cdot ||T^{-1}||$.

イロト イヨト イヨト 一座

Main result

G. Plebanek (IM UWr)

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Theorem

Suppose that there is an operator $T : C(K) \to C(L)$ such that T is either positive isomorphic embedding or an arbitrary isomorphism. Then there is nonempty open $U \subseteq K$ such that \overline{U} is a continuous image of some compact subspace of L. In fact the family of such U forms a π -base in K.

Theorem

Suppose that there is an operator $T : C(K) \to C(L)$ such that T is either positive isomorphic embedding or an arbitrary isomorphism. Then there is nonempty open $U \subseteq K$ such that \overline{U} is a continuous image of some compact subspace of L. In fact the family of such U forms a π -base in K.

Corollary

If $C[0,1]^{\kappa} \sim C(L)$ then L maps continuously onto $[0,1]^{\kappa}$.

Corson compacta

G. Plebanek (IM UWr)

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

 $\Sigma(\mathbb{R}^{\kappa}) = \{ x \in \mathbb{R}^{\kappa} : |\{ \alpha : x_{\alpha} \neq \mathbf{0} \}| \leq \omega \}.$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへの

Corson compacta

K is **Corson compact** if $K \hookrightarrow \Sigma(\mathbb{R}^{\kappa})$ for some κ , where

 $\Sigma(\mathbb{R}^{\kappa}) = \{ x \in \mathbb{R}^{\kappa} : |\{ \alpha : x_{\alpha} \neq \mathbf{0} \}| \leqslant \omega \}.$

This is equivalent to saying that C(K) contains a point-countable family separating points of K.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

 $\Sigma(\mathbb{R}^{\kappa}) = \{ x \in \mathbb{R}^{\kappa} : |\{ \alpha : x_{\alpha} \neq \mathbf{0} \}| \leqslant \omega \}.$

This is equivalent to saying that C(K) contains a point-countable family separating points of K.

Problem

Suppose that $C(K) \sim C(L)$, where L is Corson compact. Must K be Corson compact?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $\Sigma(\mathbb{R}^{\kappa}) = \{ x \in \mathbb{R}^{\kappa} : |\{ \alpha : x_{\alpha} \neq \mathbf{0} \}| \leqslant \omega \}.$

This is equivalent to saying that C(K) contains a point-countable family separating points of K.

Problem

Suppose that $C(K) \sim C(L)$, where L is Corson compact. Must K be Corson compact?

The answer is 'yes' under $MA(\omega_1)$.

イロト イポト イヨト イヨト 二日

 $\Sigma(\mathbb{R}^{\kappa}) = \{ x \in \mathbb{R}^{\kappa} : |\{ \alpha : x_{\alpha} \neq \mathbf{0} \}| \leqslant \omega \}.$

This is equivalent to saying that C(K) contains a point-countable family separating points of K.

Problem

Suppose that $C(K) \sim C(L)$, where L is Corson compact. Must K be Corson compact?

The answer is 'yes' under $MA(\omega_1)$.

Theorem

If $C(K) \sim C(L)$ where L is Corson compact then K has a π – base of sets having Corson compact closures. In particular, K is itself Corson compact whenever K is homogeneous.

		k (

E うへで 2013 11 / 12

イロト イヨト イヨト イヨト

If μ is a finite regular Borel measure on K then μ is a continuous functional C(K):

イロト イヨト イヨト イヨト

If μ is a finite regular Borel measure on K then μ is a continuous functional C(K): $\mu(g) = \int g \, d\mu$ for $\mu \in C(K)$.

2013 11 / 12

If μ is a finite regular Borel measure on K then μ is a continuous functional C(K): $\mu(g) = \int g \, d\mu$ for $\mu \in C(K)$. In fact, $C(K)^*$ can be identified with the space of all signed regular measures of finite variation (i.e. is of the form $\mu_1 - \mu_2$, $\mu_1, \mu_2 \ge 0$).

イロト 不得下 イヨト イヨト 二日

If μ is a finite regular Borel measure on K then μ is a continuous functional C(K): $\mu(g) = \int g \, d\mu$ for $\mu \in C(K)$. In fact, $C(K)^*$ can be identified with the space of all signed regular measures of finite variation (i.e. is of the form $\mu_1 - \mu_2$, $\mu_1, \mu_2 \ge 0$). Let $T : C(K) \to C(L)$ be a linear operator.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲ 圖 - ∽○< ⊙

If μ is a finite regular Borel measure on K then μ is a continuous functional C(K): $\mu(g) = \int g \, d\mu$ for $\mu \in C(K)$. In fact, $C(K)^*$ can be identified with the space of all signed regular measures of finite variation (i.e. is of the form $\mu_1 - \mu_2$, $\mu_1, \mu_2 \ge 0$). Let $T : C(K) \to C(L)$ be a linear operator. Given $y \in L$, let $\delta_y \in C(L)^*$ be the Dirac measure.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

If μ is a finite regular Borel measure on K then μ is a continuous functional C(K): $\mu(g) = \int g \, d\mu$ for $\mu \in C(K)$. In fact, $C(K)^*$ can be identified with the space of all signed regular measures of finite variation (i.e. is of the form $\mu_1 - \mu_2$, $\mu_1, \mu_2 \ge 0$). Let $T : C(K) \to C(L)$ be a linear operator. Given $y \in L$, let $\delta_y \in C(L)^*$ be the Dirac measure.

We can define $u_y \in C(K)^*$ by $u_y(g) = Tg(y)$ for $g \in C(K)$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

If μ is a finite regular Borel measure on K then μ is a continuous functional C(K): $\mu(g) = \int g \, d\mu$ for $\mu \in C(K)$. In fact, $C(K)^*$ can be identified with the space of all signed regular measures of finite variation (i.e. is of the form $\mu_1 - \mu_2$, $\mu_1, \mu_2 \ge 0$). Let $T : C(K) \to C(L)$ be a linear operator. Given $y \in L$, let $\delta_y \in C(L)^*$ be the Dirac measure.

We can define $\nu_y \in C(K)^*$ by $\nu_y(g) = Tg(y)$ for $g \in C(K)(\nu_y = T^*\delta_y)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

If μ is a finite regular Borel measure on K then μ is a continuous functional C(K): $\mu(g) = \int g \, d\mu$ for $\mu \in C(K)$. In fact, $C(K)^*$ can be identified with the space of all signed regular measures of finite variation (i.e. is of the form $\mu_1 - \mu_2$, $\mu_1, \mu_2 \ge 0$). Let $T : C(K) \to C(L)$ be a linear operator. Given $y \in L$, let $\delta_y \in C(L)^*$ be the Dirac measure.

We can define $\nu_y \in C(K)^*$ by $\nu_y(g) = Tg(y)$ for $g \in C(K)(\nu_y = T^*\delta_y)$.

Lemma

Let $T : C(K) \rightarrow C(L)$ be an embedding such that for $g \in C(K)$

 $m \cdot ||g|| \leq ||Tg|| \leq ||g||.$

Then for every $x \in K$ and m' < m there is $y \in L$ such that $\nu_y(\{x\}) > m'$.

イロト 不得 トイヨト イヨト 二日

An application

Ξ.	Ρŀ	ebane	ek (IM	UV	Vr)	

E ● E ● ○ Q ○ 2013 12 / 12

イロト イヨト イヨト イヨト

Suppose that C(K) embeds into C(L), where L is Corson compact. Then K is Corson compact provided has some measure-theoretic property (which holds true for all linearly ordered compacta and Rosenthal compacta).

(日)

Suppose that C(K) embeds into C(L), where L is Corson compact. Then K is Corson compact provided has some measure-theoretic property (which holds true for all linearly ordered compacta and Rosenthal compacta).

Problem

Can one embed $C(2^{\omega_1})$ into C(L), L Corson?

Suppose that C(K) embeds into C(L), where L is Corson compact. Then K is Corson compact provided has some measure-theoretic property (which holds true for all linearly ordered compacta and Rosenthal compacta).

Problem

Can one embed $C(2^{\omega_1})$ into C(L), L Corson?

No, if the embedding operator is to be positive or an isomorphism.

Suppose that C(K) embeds into C(L), where L is Corson compact. Then K is Corson compact provided has some measure-theoretic property (which holds true for all linearly ordered compacta and Rosenthal compacta).

Problem

Can one embed $C(2^{\omega_1})$ into C(L), L Corson?

No, if the embedding operator is to be positive or an isomorphism. No, under $\mathsf{MA}+$ non CH.

Suppose that C(K) embeds into C(L), where L is Corson compact. Then K is Corson compact provided has some measure-theoretic property (which holds true for all linearly ordered compacta and Rosenthal compacta).

Problem

Can one embed $C(2^{\omega_1})$ into C(L), L Corson?

No, if the embedding operator is to be positive or an isomorphism. No, under MA+ non CH. No, under CH (in fact whenever $2^{\omega_1} > \mathfrak{c}$).